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Abstract

Hipsters purport to transcend mainstream style, yet they all dress alike. Counterintuitivley, anticonformist
individuals that strive to avoid looking like the majority end up synchronizing with each other and looking
the same. In a recent preprint on the arXiv, mathematician Jonathan Touboul tries to explain this perplexing
behavior using a 2-state model. The model describes a large population of two types of individuals, conformist
and anticonformist, that will respectively tend to align their states with or against the average state of the
majority. Additionally, the individuals perceive the state of the majority with some delay; that is, an individual
makes her decision based on the majority trend some time ago. Touboul finds that, in majority anticonformist
populations, the anticonformists remain unsynchronized for small values of this delay. But, as the delay is
increased, a critical value is reached above which the anticonformist states align and oscillate periodically and
synchronously.

In our paper, we will reproduce Touboul’s results, using simulations and analytical calculations. Focusing
on the special case of an entirely anticonformist population, we will run simulations of the time evolution
of the population for varying values of the information delay to determine the critical delay threshold for
synchronization. We intend to calculate the critical delay value analytically as well. Also, by defining an
order parameter for the system, we will compare numerical and analytical calculations of the dependence of
the asymptotic value of the order parameter on the time delay.

Introduction

Hipsters strive to defy normalcy but, often they appose the norm in the same way. This lack of originality is
a salient feature that many systems in nature exhibit. For instance, the random misfiring of neurons in the
brain become synchronized during epileptic seizures'. In late October of 2014, Jonathan Touboul, a French
mathematician who is studying the behavior of neural networks, posted a paper on the arXiv entitled “The
hipster effect: When anticonformists all look the same.”? In this paper, Touboul develops a toy model that
captures the phenomenology of the spontaneous synchronization of anticonformist (i.e. hipster) elements. The
model is related to phenomena observed in other systems where elements make decisions based on a majority
trend, arising in areas such as psychology, spin glasses, and economics®.

Here, we reproduce the basic results of Touboul by using both simulation and an analytical approach. In a
system composed entirely of hipsters, our simulations show the anticonformists undergo spontaneous synchro-
nization above a critical threshold of the time delay with which they perceive the majority trend. Above this
threshold, we observe the hipsters oscillate coherently. Using a Galerkin-like approach, we are able to analyti-
cally predict the frequency and amplitude response of the synchronized oscillation to the choice of the delay near
critical value, in fantastic agreement with the simulations.

The Model

Touboul’s model is a stochastic model that consists of a population of n independent, 2 state elements. Each
element, 7, is either in the state .S; = —1 or the state S; = 1. The elements are one of two types: either conformist
(¢, = 1) or anticonformist (¢; = —1). The conformist elements tend to orient themselves with the majority of
the other elements while the anticonformists tend to orient opposite that of the majority. The probability of any
individual at time ¢ to change its state from S; to —95; is given by a Poisson process with a rate:

¢ (t) =1+ tanh[—¢,B8m(t —71) S; (¢)] (1)

Where 8 > 0 is the inverse temperature (or inverse noise strength) and m (t) is the majority trend

m(t):%ZSi (t) . (2)
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In order to account for the time it takes information to travel, each element perceives what the majority state
at time ¢ is at the delayed time ¢ + 7. That is, each element’s tendency to switch is informed by the rest of the
population at an earlier time. The parameter 3 effectively controls the noise level in the system. As § increases
the sharpness of the transition rate function increases meaning the transition becomes less random. This rate
function leads to a probability of switching states between time ¢ and ¢t + At (for small At):

P (t, At) = sinh (¢ (t) At) e ?DA (3)

Intuitively, if the population is predominantly comprised of conformists, the system will tend towards a steady
state regardless of the time is takes each element to perceive the mean trend. Whatever the initial majority state
is, each conformist element will tend to switch to that state, only further strengthening the trend. In the case
of a majority anticonformist population however, each anticonformist element tends to orient itself against the
mainstream trend which acts to weaken the integrity of the mainstream. If the anticonformist’s perception of
the mainstream trend is outdated, then the anticonformist could conceivably switch the state that is currently
mainstream. This would act to strengthen the mainstream trend during the time it takes the elements perception
to catch up (i.e. 7). Now, consider that every anticonformist element is doing this. Together they will all begin
to switch away from the majority at the delayed time creating a new mainstream. Perhaps, there is a critical
delay 7. such that for 7 > 7. the system will exhibit oscillatory mainstream trends whose frequency, f, is of order
1/7.

In order to investigate this model further, we wrote our own MatLab simulations. Our simulations gave
the same results that Touboul reports from his simulation in his paper. To focus our study, we considered a
system that entirely consists of anticonformists. The simulations were carried out with 3 = 2, n = 5 x 103,
At = 1072, and the initial condition was chosen at random. Typical output results from our simulation are
shown in figure 1. The simulation shows that there is in fact a 7, such that for all 7 > 7. the system exhibits

7=0.1

Figure 1: Sample simulation outputs for various values of 7. Values of 7 are chosen to be well be.llow 7, just
below 7., and well above 7.. Each pixel on the black and white images correspond to the state of an individual
element. The plots below the images show the mean trend vs. time. Both the plots and the images are plotted
on the same time scale.

periodic oscillations where as, below 7. m = 0 is the stable solution. For 7 just bellow 7. there are patches of
partially synchronized periodicity that emerge but, eventually decay. This weak bursting of synchronization can
be seen in figure 2. Figure 2 is a spectrogram of the log of the power spectral density as a function of 7. The
weak partial synchronization is evident by the broadband curve that is present before 7., represented by the red
dotted line.
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Figure 2: Log of the power spectral density of m(t) for different values of 7. Dotted line is 7. compute from
linear stability analysis.

Analyzing the Model

According to Touboul, in the thermodynamic limit that the number of hipsters n — oo and in the mean field
approximation, the averaged trend m(¢) of the hipsters satisfies the differential equation

m(t) = —Q(m(t) + tanh (Bm(t — T))) . (4)

Note that because this is a delayed differential equation, the initial condition is a function on the time interval
[—7,0]. Thus, the initial condition belongs to an infinite-dimensional vector space and so do the solutions to this
equation, unlike the finite-dimensional solutions of ordinary differential equations. Despite this complication, it
is clear that m(t) = 0 for all ¢ is a steady-state solution. Physically, this corresponds to the totally disordered
state of the hipsters. We follow Touboul by investigating the linear stability of this solution.

We Taylor-expand the hyperbolic tangent about m = 0 to first order, yielding

m(t) ~ —Z(m(t) + Bm(t — T)). (5)

Next, we assume solutions of the form m(t) = ae’.

factors of ae* gives the characteristic equation

Substituting this into Eq. (5) and eliminating common

A= —2(1+ ) (6)

for the eigenvalues of the system. Because of the exponential, there are an infinite number of complex solutions
to this equation. What’s more, if a single one of them has Re[A] > 0, then 0 is an unstable equilibrium. We
investigate this by substituting A = a + ib into Eq. (6) and taking real and imaginary parts. This gives the pair
of equations

a= —2(1 + e " COS(bT)) , (7)
b=28e " sin(br). (8)

Focusing on Eq. (7), we see that if 7 is small enough, then cos(br) = 1 and because 5 > 0 and e~ " > 0, we have
a < 0. Thus, for small 7, the totally disordered solution m(t) = 0 is linearly stable.

As 7 is increased, however, a Hopf bifurcation may occur, meaning a changes sign from negative to positive
and the equilibrium solution is no longer stable. By definition, the Hopf bifurcation happens when the eigenvalues
cross the imaginary axis, i.e. @ = 0. Substituting this condition into Egs. (7) and (8) and using some algebra
and a trigonometric identity, we get the relation

—tan~Y(y/B2 — 1) + kr

T, = for k an integer. 9
NS g 9)

Thus, for a fixed 3, Eq. (9) gives the critical delay value 7. for which the m = 0 solution goes unstable. To
compare with our simulations, we take § = 2, and k = 1 gives the first positive value of the critical time delay



T. =~ 0.605. This value is plotted as the vertical dotted line in Figure 3, where the amplitude of the hipster
oscillation versus 7 computed from simulations is plotted as the solid curve in the upper graph. We see the
analytical value of 7, is exactly where the amplitude of the average trend oscillation significantly departs for 0.
Evidently, above 7, the stable solution becomes a periodic oscillatory function whose average amplitude depends
on T.

We now take the calculation one order higher and compute the dependence of the frequency and amplitude
of the oscillation on 7 near the critical point. Empirically, we see the steady-state solution for the mean trend
is periodic for 7 > 7., so m(t) may be expanded in a Fourier series. Also, from the power spectrum of m(t) in
Figure 2 obtained from simulations, we observe that near 7. (dotted line), the first Fourier mode dominates the
spectrum. Thus, for small 7 — 7., we estimate m(¢) by only looking at the first term of its Fourier series,

m(t) = asinwt . (10)

Now by requiring the solution to be self-consistent, i.e. forcing it to satisfy Eq. (4), we can obtain formulas for
the dependence of a and w on 7. Because we are interested in 7 near 7. we can also safely in assume small
oscillations for m. Then we can again expand the hyperbolic function in Eq. (4) about 0, this time to third order
in m, yielding

(t) ~ —2<m(t) + Bm(t— 1) — %,BSm(t - 7)3) . (11)

We then substitute Eq. (10) into Eq. (11), and in the spirit of the Galerkin method, we discard higher frequency
Fourier terms that are generated by the cubic term, keeping only the first Fourier mode. After the application
of some trigonometric identities, we respectively set the coefficients of the sine and cosine terms on both sides of
the equation equal to each other, giving the system of equations

wa = Basin(wT)(2 — %ﬁQaQ) (12)
2a = —Pacos(wt)(2 — %52(12) (13)

which determine a¢ and w as functions of 7.

100

~J
9]

% synchronized
[N} [
W (e}

o

1.18

4 0.79

0.39

0.00
0

Figure 3: Amplitude (upper graph) and fundamental frequency (lower graph) of the mean trend oscillation as a
function of the delay 7. The amplitude is expressed as a percentage of the population that is in sync. Simulation
results are solid curves, analytical approximations are dotted curves. The vertical dotted line 7, is derived from
linear stability analysis.

Dividing Egs. (12) and (13) gives an exact relationship between w and 7,

tan(wt) = f% . (14)



Remarkably, this relationship is completely unaffected by the noise 5. For a given 7, this equation has infinitely
many solutions for w, so we choose the first positive solution as our value of w(7), i.e.

wT:W—tan_l(%) (15)

We compute w(7) thus using a numerical root finder, and we compare this result with our simulations in the
lower graph of Figure 3. We computed the fundamental frequency w from our simulations by finding the lowest
frequency peak of the Fourier transform of the simulated m(t), and this is plotted versus 7 as the solid line. Our
analytical curve w(7), the dotted line, agrees fantastically well with the simulations. Surprisingly, we also see
agreement for 7 < 7, and even values of 7 well above 7, This may be explained by the fact that w is independent
of the noise, so regardless the 3, the system may have oscillatory solution for all 7. However, these solutions are
not stable below 7.

We can also implicitly compute the dependence of the oscillation amplitude a on 7. Looking at Eq. (13),
we discard the trivial solution a = 0 and solve for a. In addition, by using Eq. (15) and using a trigonometric

identity, we get
2 1 w?
a=—\/1—=4/14+—. 16
s\t Vit (16)

While we cannot explicitly express a as a(7), we know we can get w from Eq. (14), so a truly only depends on 7.
Eq. (16) can also be used to computed 7. by setting a = 0. In fact, by substituting this condition into Eq. (16)
and using Eq. (15), one arrives exactly at Eq. (9) for 7. derived from linear stability analysis. Eq. (16) is plotted
in the upper graph of Figure 3, showing that it agrees very well with the oscillation amplitude in the simulations
near 7.

Conclusion

In conclusion, we were able to find spontaneous synchronization in Toubol’s toy-model of hipsters. In a system
consisting of many two-state agents that tend to align their own states with the opposite of the majority trend,
we reproduced Touboul’s surprising result that the agent-system experiences a phase transition from the expected
completely disordered state to a synchronized, oscillatory state. This phase transition occurs as you increase the
time delay with which the hipsters perceive the majority trend, 7, past a critical value 7.. We were also able
to reproduce Touboul’s analytical calculation of 7., and were able to extend his results by finding the implicit
dependence of the angular frequency w and oscillation amplitude a on 7 near 7. In particular, our function w(7)
seemed to be accurate far from 7, as well, so we speculate that it is possible to show our relation for w(7) is valid
for all 7.

The synchronization experienced by the hipsters is very similar to other models exhibiting spontaneous
syncrhonization, such as the Kuramoto model. Below a threshold of a tuning parameter, the system has a
unique, stable, completely disordered solution that it reaches regardless of initial preparation. When the tuning
parameter reaches a critical value, the system settles in an ordered solution that can be characterized by an order
parameter. In our case, the amplitude of the hipster trend oscillation plays the role of the order parameter. This
order parameter gradually increases from 0 as the relevant tuning parameter is increased past the critical point,
and the shape of its turn on is a square-root, characteristic of the Kuramoto model and other models. We find it
remarkable that these common traits of spontaneous syncrhonization can be found in Touboul’s hipster model,
in which every agent is acting precisely to avoid synchronization.



