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I. INTRODUCTION

Nearly every flow in the universe is turbulent. Turbulence dominates flows on a vast range of length
scales in both naturally occurring and man-made settings. From the spectacular flow within a nebula to
the atmospheric jet-streams in weather to the air rushing past a car on the highway to the blood pumping
through the aorta with every heartbeat, the flows we interact with and are interested in understanding are
all turbulent. Turbulence is the prime source of difficulty in nearly all engineering or scientific endeavors
involving fluid flows such as weather prediction, aerodynamic design, and industrial chemical mixing.

Despite the extreme prevalence of turbulence in flows around us, turbulence has remained one of the
longest unsolved problems in classical physics. Understanding the complicated motion of an unsteady flow
has eluded scientists since the first scientific theory of turbulence was proposed by Leonardo da Vinci more
than 500 years ago [1]. Nearly 300 years after da Vinci, the Navier-Stokes (NS) equations were derived,
which describe the time rate of change of a fluid’s velocity everywhere in the flow [2]. Physicists and
mathematicians have been trying to determine ways to solve the NS equations in parameter regimes where
turbulence is present. The challenge with the NS equations is that they are nonlinear partial differential
equations and the mathematical machinery necessary for dealing with these types of problems is, for the
most part, nonexistent.

Most existing approaches to understanding turbulence are statistical ones. These approaches treat tur-
bulence as a random fluctuation on top of the mean flow. The fluctuations can be modeled a number of
ways, but ultimately the stochastic nature of the fluctuations makes understanding the time evolution of
turbulence difficult.

Despite the stochastic nature of classical turbulence modeling, experiments have revealed that ordered
structures do, in fact, exist within turbulence suggesting it is possible to develop a model based on specific
flow patterns. The structures being observed occur often enough that fluid dynamicists are able to reliably
identify and name them [3, 4]. These characteristic flow patterns, called Coherent Structures, are regions of
the flow that have features that persist for a significant duration of time. Many Coherent Structures have
been identified, but two of the most commonly studied are quasi-streamwise rolls [5] and hairpin shaped
vorticies [6]. There are theories about the role Coherent Structures play in turbulence [7, 8], however they
are all phenomenological and are not easily connected to the governing equations.

Recently, a new approach to understanding Coherent Structures in turbulence based on first principals and
tied directly to the NS equations has been developed. This new approach relies on numerically computing
special nonchaotic solutions to the NS equations and analysing their dynamics. This approach has emerged
from the field of dynamical systems theory and makes use of the observation that, embedded within the
complicated dynamics of chaotic systems there exist simpler, nonchaotic solutions to the governing equations
that guide the chaotic dynamics [9-16]. These nonchaotic solutions are thought to be the precise solutions to
the NS equations that coherent structures observed in turbulence are mimicking [10]. These special solutions
are often called Exact Coherent Structures (ECSs). With a sufficient number of ECSs in hand, the time
evolution of the turbulence may be able to be approximated.

To investigate the use of ECS theory in an experimentally observed turbulent flow, we will be looking at
a weakly turbulent flow in a Taylor-Couette geometry. Taylor-Couette flow (TCF) is the flow between two
coaxial, independently rotating cylinders (see Fig. 1). The TCF is ideally suited to study the dynamical
systems approach to turbulence because it is able to be investigated in the numerics without approximation
or ambiguity (i.e. direct numerical evaluation of the NS equations with the actual physics at the boundary
of the TCF cell). Additionally, experimental measurements of the turbulent velocity field can be made over
a large portion of the flow domain.

In this proposal I will discuss some relevant background information as well as preliminary work before
presenting the work I propose completing for my thesis. I will first give a brief introduction to the theoretical
framework and tools that will be used in the proposed research in section II. Then, in section III I will discuss
the important case in which the height aspect ratio in TCF becomes small and the axial end effects play a
role in the dynamics of the turbulent transition (specifically in a system with a ratio of height to gap width
of 5.26). Finally, in section IV T will propose new research in TCF with a ratio of height to gap width of 1
that, together with the work in a ratio of height to gap width of 5.26, will make up the content of my thesis.



FIG. 1. In Taylor-Couette flow, a fluid is confined between coaxial cylinders of radii r; and r,, which counter-rotate
with angular velocities w; and w,, respectively. In the axial direction, the flow is bounded by two end caps that
rotate with the outer cylinder and are separated by a distance h. In the radial direction, the separation between the
cylinders is d = 7, — r;. The flow is periodic in the azimuthal direction. Figure taken from Crowley et al. [17]

II. BACKGROUND

A. Dynamical systems

There are two different mathematical approaches commonly used when solving for the dynamics of a
physical system. One method involves deriving a differential equation relating coordinates to their derivatives
and the other is to derive a set of coupled differential equations describing the time rate of change (i.e. first
time derivative of) each coordinate. If, for instance, the system in question is a mechanical system, then the
traditional approach, stemming from Newton’s second law, is to describe the system in terms of coordinates
and solving a differential equation relating these coordinates to their second derivatives in time. For example,
a simple pendulum can be described by measuring the angle made between the bob and the direction of
gravity, 6, and the acceleration of this angle, §. With this coordinate and its acceleration, a differential
equation relating the two can be written down:

0= —%Sin [6] (1)

where g is the local gravitational acceleration and [ is the length of the pendulum. There are powerful methods
for deriving these differential equations (e.g. variational techniques), but often analysing the resulting
equation for complicated systems is difficult. There is another approach, pioneered by Henri Poincaré in the
late 19th century, that utilizes the same coordinates. Instead of deriving equations relating coordinates to
their accelerations, this alternate approach derives a system of differential equations describing the time rate
of change of each of these coordinates and their velocities [18, 19]. This coupled set of differential equations



is called a dynamical system. For the simple pendulum case this system these equations would be:
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(2)

e = —%sm[e}.

This second procedure, though mathematically equivalent to the first, is intuitively different and lends itself
easily to more powerful analysis techniques.

Expressing the physics in this dynamical systems way suggests that a natural way of understanding the
dynamics is to consider a point moving around in the space of coordinates and their associated velocities.
Since the governing equations are expressed as total time derivatives of the coordinates and their velocities,
each coordinate and velocity can be thought of as its own independent variable. By constructing a space
where each dimension is a different coordinate or coordinate velocity, the complete state of the system at an
instant in time can be represented as a single point. This space is often called state space and the governing
equations describe how this point moves in time throughout it. As time evolves, the point traces out a curve
and the shape of this curve is influenced by the special geometric objects within state space.

To illustrate how the system behavior in state space is guided by geometrical objects, consider an example
of a purely mathematical system: the 2D Lotka-Volterra system [20]. In the Lotka-Volterra, the “coordinates”
are the total population of species 1, x1, and species 2, x5. The specifics of the dynamical system depend
on details of the two species and their interaction. One such system may look like:

il =T (37.%1 72562) (3)
1:2 21‘2(2—1‘1 —1‘2).
In this system, the linear term is exponential growth (i.e. 2 becomes 4 which becomes 8 and so on), the
—z? term captures intra-species competition, which prevents the population from growing indefinitely, and
the cross-term —xqx9 captures inter-species competition. By knowing x; and x2 at an instant in time, in
principle, the time evolution of the system can be determined for all time. However, as the nonlinearity
grows, the evolution of z; and x5 can be very complicated and slight changes in the initial known values can
result in wildly different time evolution. To see why this may be the case, consider a plot shown in Figure 2
where each point in the z1-x2 plane represents a different state of the system. The arrows and their spacing
on this plot represent which direction and how fast the system will move in the next time instant. Now,
consider the situation in which the starting configuration of the system is very close to (but not exactly) at
(z1,22) = (1,1). In the vicinity of this location, the dynamics can be linearized and the directions along
which the dynamics push or pull trajectories towards this point (i.e. eigendirections) can be determined.
If the initial condition was not on the point (1,1) or along either of its eigendirections, then depending on
which eigenvector it was closest to, the time evolution would race off to different regions of state space.

In state space, there are key solutions to the governing equations which are simple in time that play an
important role in describing the systems’ behavior within state space. The point (1,1) is an example of one
such solution such that if the system is found with that configuration, then it will remain in that configuration
as time evolves. These special points are called fixed points and their time evolution is invariant to the
dynamics of the system (i.e. they remain unchanged by the dynamical systems governing equation). These
invariant solutions to the governing equations help shape the structure of state space. Linearized dynamics
in the neighborhood of these invariant solutions generically fall into three types: stable (an attracting
solution), unstable (a repelling solution), and a saddle (hyperbolic solution). In Figure 2, the fixed-point
A is an unstable equilibrium solution that repels all trajectories in its vicinity. Similarly, the fixed-point
solutions B and D are stable equilibria that attract nearby trajectories along all directions. The dynamics in
the neighborhood of these two types of solutions are relatively simple and as far as dynamics are concerned,
boring. The fixed-point solution C, however, attracts trajectories along some directions and repels them
along others; this type of solution is a hyperbolic equilibrium (or a saddle). Invariant solutions, in general,
are solutions whose dynamics are simple (or recurrent) in time. Another common example of an invariant
solution is a periodic orbit in which the state returns to itself after a fixed, finite amount of time 7' (i.e.
x;(t) = z;(t+T)). In general, invariant solutions come in many different topologies, but the present research
is only focusing on the simplest of these topologies.

Beyond the solutions themselves, stable/unstable manifolds form dynamical connections linking regions of
state space. That is, an initial condition placed along certain unstable directions of an invariant solution will



State space

FIG. 2. Example 2D state space of a nonchaotic flow map. The dynamics shown here are from the Lotka-Volterra
(competition model) relations. The fixed-point A is a repeller, while fixed-points B and D are attractors and C' is
a unstable hyperbolic fixed-point (or, saddle). The blue lines with arrows indicating flow direction, are dynamical
connections between the solutions.

move away from the solution beyond the linear neighborhood and eventually land on the stable direction of
another solution. One class of these special curves, known as heteroclinic orbits are shown in blue in Figure
2. This means that a trajectory that visits the neighborhood of one hyperbolic unstable solution could get
kicked away from it and travel along its unstable direction and continue along its nonlinear extension. If the
state space geometry along the heteroclinic orbit is not too unstable itself, the trajectory could travel along
the orbit until it reaches the neighborhood of the invariant solution on the other end of the connection. In
this way, the invariant solutions not only shape the local geometry of state space, but their connections form
a network that ties together different regions of state space. As the dimensionality of state space grows, these
lower dimensional entities (i.e. invariant solutions and their connections) remain the objects that guiding
the dynamics in state space.

State space describing a fluid flow is very large (i.e. high dimensional). For a fluid, every fluid element
in the flow has its own velocity. This means that describing its dynamics requires a coordinate and velocity
for every point in the flow. The resulting state space is very high dimensional. In principal, a fluid is
a continuum of fluid elements and thus would need an infinite number of coordinates and velocities and
therefore an oo-dimensional state space. In practice, however, viscosity causes structures with short length
scales to dissipate very quickly. This means that there is a smallest length scale, set by the viscosity, that
is relevant in the fluid flow so state space does not need to be co-dimensional, but rather, just a very large
number of dimensions [21].

The invariant solutions in the high dimensional state space describing a fluid corresponds to flow patterns



in the 3D physical space the fluid lives in. These special flow patterns are the ECS discussed in Section I.
They are unstable flows and therefore will not be exactly present in a turbulent flow, but the turbulent flow
may come near to them in state space temporarily. This means that a turbulent flow will fleetingly resemble
the ECS. A primary objective of the proposed work in this thesis is to test this conjecture about the role
of ECS in laboratory turbulence that takes place in three spatial dimensions—specifically, in the turbulent
flow between rotating cylinders—turbulent Taylor-Couette flow.

FIG. 3. A schematic representation of the hierarchy of state space structures. The red curve represents a turbulent
trajectory and the blue structures represent ECS.

B. Taylor-Couette flow

Taylor-Couette flow, or the flow between two coaxial, independently rotating cylinders (see Figure 1),
is fully characterised by its geometric and fluid properties. Taylor-Couette flow (TCF) can be uniquely
characterized by four nondimensional parameters. Two parameters characterize the geometry of the system:
the radius ratio n = r;/r,, where r; and r, are the radii of the inner and outer cylinders, respectively, and
the aspect ratio I' = h/d, where d = r, — r; is the radial separation distance between the cylinders and h
is the axial height of the flow domain. The other two parameters, the inner and outer Reynolds numbers
Re; ,, describe the cylinders’ rotation rates and are given by

Reo = M7 (4)
v
where v is the kinematic viscosity of the fluid and w;, are the angular velocities of the inner and outer
cylinders, respectively. By convention Re; is always taken to be positive, whereas Re, is positive when the
cylinders are co-rotating and negative when they are counter-rotating.

Centrifugal effects can cause the flow to become unstable. If the inner cylinder rotates, there will be a
centrifugal force acting on the fluid. If the radial pressure gradient is greater than or equal to this force, a
fluid element displaced in the radial direction experiences a restoring force and the fluid flow is stabilized. If,
however, the pressure gradient cannot balance the centrifugal force, a fluid element displaced in the radial



direction will not experience a restoring force, but instead, continue to be forced away from its original
position. This criterion for stability is known as the Rayleigh criterion [22, 23] and if the fluid does not meet
this criterion it is considered to be centrifugally unstable. In TCF this criterion works out to be Re; > %Reo
for the base flow. This criterion, however, implies that for a stationary outer cylinder and just a very slow
inner cylinder rotation, the base flow would be unstable. The Rayleigh criterion neglects viscosity which was
found by Taylor to have a stabilizing effect [24]. Using linear stability analysis Taylor calculated when the
base flow becomes unsteady as a function of Re, and Re;. This calculation also showed that the base flow
was stable for all values of Re, and a stationary inner cylinder.

When the cylinders’ rotation rates increase beyond the initial stability threshold, additional instabilities
cause the formation of numerous different, non-turbulent flow states. These flow states were first predicted
and experimentally studied by G. I. Taylor in 1923 [24]. Taylor investigated these flow states by pho-
tographing the stream lines traced out by fluorescent dye injected into the flow. In Taylor’s own words,
this technique is considerably difficult. In 1956, to further understand what was going on within the flow,
Schultz-Grunow and Hein seeded the flow with aluminum flakes they extracted from hammer paint [25]. Due
to their anisotropic shape, the aluminum flakes preferentially align with the gradient in the flow resulting in
regions of the flow that reflect more or less light depending on the local gradient in the flow. This technique
allowed Schultz-Grunow and Hein to visualize transitions in the flow beyond the initial stability threshold.
This same technique was later used by Andereck et al. [26] to discover a myriad of stable, non-turbulent
flow states (see Figure 4 for examples) for different rotation rates (see Figure 5). This flow visualisation
technique has come to be known as rheoscopic flow visualization with modern experiments being carried out
very similarly with the use of more neutrally buoyant particles [27].
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FIG. 4. Example flow visualization of non-turbulent stable flow states observed in TCF. (a) Modulated wavy vortex
flow. (b) Laminar spiral flow. (c) Interpenetrating spiral flow. (d) Rippled wavy-Taylor-vortex flow with arrows
pointing to the ripples. (e) Twisted Taylor vertices. To see what values of Re these flow states occur, refer to Figure
5. These images are taken from Ref. [26].

When the rotation rates are sufficiently fast, the flow transitions into turbulence through one of two
ways. TCF has mostly only been studied in the large ' limit with inner cylinder rotation dominating. The
transition to turbulence in the large I' limit is not directly from laminar, but instead the flow passes through
a series of stable flow states. This is unlike the turbulent transition observed in shear driven flows such as in
pipes or over an airplane wing which is directly from laminar. Because of this, TCF turbulence is not often
studied in the transitional region; it is typically studied in the high Re regime where the transition dynamics
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FIG. 5. Flow state transition map for a TCF with a large I' and n = 0.883. The horizontal axis corresponds to
Re, and the vertical corresponds to Re; This diagram was generated by first setting the Re,, then quasi-statically
increasing Re; and recording when the transition occurred. This figure comes from Andereck et al. [26].

are not important. There are, however, scenarios in TCF that exhibit direct laminar to turbulent transitions
akin to those observed in wall-bounded shear flows. If, for example, the outer cylinder rotation dominates,
linear stability analysis of the symmetric flow suggests that no transition will occur. At sufficiently high
Re, a spontaneous transition to turbulence is observed [28-30]. This transition is not due to the change
in stability of a base flow, but rather due to the nonlinear growth of finite amplitude disturbances. These
studies have all been in systems with a large I' where end effects from the top and bottom end caps can
mostly be ignored.

The small ' regime is important in the work investigated here, however, little is known about how TC
becomes turbulent in small I' systems. In order to make comparisons between fully resolved numerical
simulations with the same boundary conditions as in the experiment, the flow domain must be small to
enable tractable calculations. In the discussion above, the description of turbulence has focused on the
regime where the aspect ratio is large. There have been few studies focused on turbulence when I' is small.
As T decreases, the end effects begin playing a more substantial role in the dynamics and the overall picture
changes. The presence of the top and bottom end caps result in a global secondary flow in the r-z plane
analogous to geophysical Ekman circulation. This secondary flow acts to redistribute angular momentum
and as I' becomes small, this happens so much that the base flow no longer resembles the base flow in the
large I' system. The transition away from the laminar base flow occurs at a larger value of Re; as I' decreases
[31]. An exploration of how this transition changes for a system with a small " is presented in section III.

Much of the understanding of TCF discussed so far has relied heavily on the intuition afforded to researchers
by flow visualization. In order to test the dynamical systems description of turbulence described in section
II A, a more quantitative observation technique is needed.



C. Velocimetry

The discussion of fluid dynamics experiments so far has relied on qualitative observations of the flow, mostly
using rheoscopic flow visualization techniques. However, a technique is needed to capture quantitatively, the
time-resolved, instantaneous state of a turbulent flow that is present in the dynamical systems picture of
turbulence. There are numerous quantitative measurement techniques that offer velocity information about
the flow.

Quantitative flow velocimetry techniques can be split up into two categories: techniques where the velocity
is either inferred from measurements of intrinsic fluid properties or measurements of movement of tracer par-
ticles dispersed in the fluid. Techniques based on intrinsic fluid properties measure, for instance, the fluid’s
instantaneous pressure (e.g. pitot tubes), the ability for the fluid to absorb heat (e.g. hot-wire), the speed of
sound (e.g. acoustic techniques), or the index of refraction (e.g. schlieren). These techniques typically obtain
time dependant velocity information that is localized in space which requires approximations to extrapolate
to obtain a spatially extended flow state. Similarly, many of the techniques that use tracer particles, obtain
spatially localized velocity information (e.g. LDV and acoustic particle Doppler) as well. However, there are
tracer based techniques which rely on imaging the instantaneous distribution of particle locations via a cam-
era. There are numerous image velocimetry techniques such as Optical Flow, Motion Enhancement, Particle
tracking, and Particle Image Velocimetry (PIV). Because image velocimetry techniques offer instantaneous,
spatially extended velocity information, they are ideal candidates for experiments exploring the dynamical
systems description of turbulence. The work discussed in this proposal will utilize several variants of PIV.

PIV is a measurement technique where successive images of flows that have been seeded with tracer
particles are analyzed in order to obtain particle displacements. The displacement of the tracer particles
are assumed to track well with the fluid volume surrounding the particle. There are many considerations
that need to be thought of before implementing this technique and are discussed in many texts [32, 33]. A
successive pair of images obtained from a camera capture light intensity distributions from the flow impinging
on the cameras’ sensors at two neighboring instants in time. PIV does not capture the specific locations of
individual particles, but instead, works entirely with the light intensity field obtained on the camera image.

Regardless of the implementation, all PIV algorithms operate on the same principal. The PIV algorithm
splits the light intensity distribution from the flow at one instant in time up into sub-regions and performs a
cross-correlation of that sub-region with the full light intensity distribution obtained in the next instant in
time in order to determine the light intensity patterns’ local spatial shift. The standard implementation of
PIV relies on the particle pattern — and therefore the light pattern — remaining largely undeformed between
two frames with only a lateral shift between them.

Since particles seeded in a 3D flow will be distributed throughout the whole 3D volume, the location of
the particles in the dimension perpendicular to the image needs to be known in order to obtain accurate
particle displacement. Without this additional spatial information, there is no way to obtain a coherent
light intensity pattern displacement. Obtaining the additional spacial information can be achieved in several
different ways. In the following subsections two of these methods will be discussed; one method to obtain
the two components of velocity within a 2D sheet (2D-2C) and a method to obtain the full three components
of velocity in the full flow volume.

D. 2D planar PIV (2D-2C)

In 2D PIV, the particles being used to probe the velocity field are confined to a single plane (or, thin
curved surface in some cases[34]) typically by confining the illuminating light to a thin sheet. With only a
single plane of particles being illuminated, the camera can be setup perpendicular to this illumination sheet,
removing the ambiguity of the particles position in the third dimension. Two successive images obtained
in this way can be directly split into sub-regions and cross-correlations performed in the standard PIV
implementation. Like with any PIV algorithm, the quality of the input images is crucial. High quality
images can be obtained by image preprocessing where filters are implemented to enhance signal-to-noise
ratios of the particles. The highest quality PIV occurs when the raw images themselves have high a signal-
to-noise ratio which can be achieved with careful setup of the illuminating optics. For best results with
PIV, the images will have uniform lighting, clear separation between particle and background intensities,



and particle intensities that remain constant in time (e.g. they are not anisotropic and tumbling or moving
perpendicular through the light sheet).

By establishing the plane by simply cropping the illuminating light into a sheet, particles are only illu-
minated when they are in the light sheet and therefore will only contribute to the correlations when they
are in the plane. As long as the velocity is mostly in line with the plane, then particles will remain in the
illumination long enough for a correlation to be determined. If, however, there is a substantial component
of the velocity perpendicular to the plane, particles will appear and disappear on the image in a seemingly
random way making a correlation impossible. This can be mitigated by either increasing the thickness of
the light sheet, aligning the illumination plane with the maximum velocity, or by increasing the frame rate
of the camera.

E. 3D tomographic PIV (3D-3C)

Tomographic Particle Image Velocimetry, or tomo PIV, is a velocimetry technique where a 3D volume
of light intensity is first reconstructed, then 3D cross-correlations are carried out to find the most likely
displacement. In tomo PIV, multiple cameras simultaneously image a particle seeded flow from various
angles. A 3D light intensity distribution is then calculated from these images using an iterative reconstruction
algorithm [35, 36]. A 3D cross-correlation is then performed against two successive in time subregions of the
reconstructed intensity field and a 3D grid of 3-component velocity vectors are produced [37]. If the density
of particles on each individual image is too high, the reconstruction algorithm will produce erroneous peaks
in the reconstructed field called ghost particles. Since these ghost particles have nothing to do with the flow
and are just artifacts of the reconstruction, they diminish the quality of the measurement. As the seeding
density is increased the number of ghost particles also increases [38] and in practice the highest seeding
density that is possible for tomo PIV is about 0.5 particles per pixel [36].

Though tomo PIV is a high fidelity technique, it is a few serious draw backs. Tomo PIV is a high quality
technique for computing 3D velocity fields; however, it requires not only reconstructing a 3D intensity array
at each timestep, but it also requires performing many cross-correlations in the 3D space. These calculations
are demanding, requiring a lot of computational power to determine a single snapshot in time, let alone an
entire time series. Similarly, each snapshot in time produces a 3D array of velocity measurements which
takes up a lot of disk space and is cumbersome to analyze. If adequate computational power is available,
there are still drawbacks such as the increased noise from ghost particles [37] and by representing the light
intensity field on a 3D gridded voxel space, there are discretization errors on the particles locations [36]
Additionally, cross-correlation applies spatial averages over the subregion volumes and therefore smooths
out velocity gradients and fine flow structures. This effect can be slightly mitigated with the use of Gaussian
[39] or adaptive [40] weighting in the correlation process, but cannot be fully removed.

III. TRANSITION TO TURBULENCE IN SMALL ASPECT RATIO TCF

The transition to turbulence in TCF is typically thought of as occurring through a series of bifurcations
of simpler, non-turbulent states. However, as I' gets smaller, the end effects begin playing a key role and
the transition begins resembling the transitions to turbulence observed in shear driven flows (e.g. pipes,
channels, and boundary layers). To explore this, lets first look at at a TCF system where the end effects are
important but do not dominate the flow. In I' = 5.26 TCF exhibits a novel transition to turbulence that is
mediated by an intermediate, stable flow state. In the following sections we will discuss the methods used
to probe this transition as well as briefly describing some of our findings in this system.

A. Methods

Our TCF apparatus with 7 = 0.905 was composed of a glass outer cylinder with a radius of r, = 80.03 +
0.02 mm and a brass inner cylinder of radius r; = 72.3940.01 mm with a black powder coat to enhance optical
contrast in flow visualization studies. The aspect ratio, I' = 5.26, was set by two end caps, separated axially
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by A = 40.24+0.05 mm and attached to rotate with the outer cylinder. The cylinders were driven by stepper
motors; to reduce vibration and to ensure uniform cylinder rotation, timing belts connected the cylinders to
the motors, which were mounted separately from the TCF apparatus. Additionally, a transmission with a
gear ratio of 28:1 was used with the inner cylinder stepper motor to increase the resolution in Re;. While
the cylinders were rotating, the rate of temperature variations in the flow was kept below 0.5 °C throughout
the duration of the experiments by surrounding the outer cylinder with a liquid bath. With these measures,
the total systematic uncertainty for Re; and Re, was below 1 %.

In the tomo PIV results discussed here, determination of 3-D velocity fields were made throughout a
flow volume with an approximate size of d radially, 0.75h axially, and 27r,/10 azimuthally. Custom-made,
density-matched polyester particles (25 pm to 32 pm in diameter) were doped with Rhodamine 6G and
suspended in the flow. The particles were illuminated with a Quantronix 527/DP-H Q-switched Nd:YLF
laser. Fluorescent light emitted from the particles was collected by four Vision Research Phantom V210 high
speed cameras synchronized with the laser illumination. Each camera was fitted with a 105 mm Nikon Nikkor
fixed focal length lens attached via a Scheimpflug adapter (LaVision Inc.). A low pass optical filter (Semrock
BLP01-532R-25) on each camera lens attenuated, by a factor of 107, the scattered 527 nm wavelength laser
illumination and passed, with 80% efficiency, fluorescent light at wavelengths >532 nm. The images were
then analyzed using LaVision Inc.’s DaVis tomographic PIV software package. To reduce optical distortion
from the outer cylinder’s curved surfaces, the index of refraction of both the working fluid and the bath
liquid were matched to the index of refraction of the glass outer cylinder. Index matching of the working
fluid was achieved by using an ammonium thiocyanate solution prepared with a specific gravity of 1.13 and
a kinematic viscosity of ¥ = 1.37 mm?/s at 23 °C [41]. A small amount of ascorbic acid was added to the
ammonium thiocyanate solution to mitigate reaction with trace metals [42]. Index matching of the bath
liquid was achieved by a binary mixture of two mineral oils with a 68.8 % heavy viscosity oil (McMaster-Carr
part no. 3190K632) to 31.2 % light viscosity oil (McMaster-Carr part no. 3190K629) ratio. Further details
about the implementation of tomo PIV measurements in our TCF apparatus are reported elsewhere [43].

Fully resolved direct numerical simulations (DNS) of TCF were conducted using the code developed by
M. Avila and his collaborators [44-46]. This code uses a pseudospectral scheme to solve the Navier-Stokes
equation in cylindrical coordinates subject to physical (no-slip) boundary conditions at the surface of the
rotating concentric cylinders and top and bottom end caps. Details of how this code works can be found in
Crowley et al. [17].

To quantify flow fields in both simulations and experiments, the perturbation flow field

V(t) = v(t) — v*m, (5)
characterizes the deviation of the full flow v(t) from an axially symmetric laminar flow v!*™ computed
numerically at the same Reynolds numbers. The numerically computed v*™ was used to compute the
perturbation flow field for both simulations and experiments since the laminar flow is unstable for some Re;
considered in this study, and, therefore, unobservable in the laboratory experiments.

B. Transition in experiments and numerics

First, we briefly describe a coarse experimental exploration of laminar-turbulent (turbulent-laminar) tran-
sitions that occur as Re; is slowly increased (decreased) while maintaining Re, fixed in the counter-rotating
regime. We then focus on the case of Re, = —1000 and examine in detail the transitions associated with
increasing and decreasing Re; using both laboratory experiments and numerical simulations.

1. Laminar-Turbulent Transition: Dependence on Re,

To coarsely map out the transition boundaries for TCF in the geometry studied here, we performed flow
visualization experiments by first spinning up the outer cylinder from rest (with the inner cylinder stationary)
to a specific value of Re,; then, with Re, held constant, Re; was increased in steps of ARe; = 10 by slowly
stepping up the rotation rate of the inner cylinder until a qualitative change in the flow was observed. We
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FIG. 6. Phase diagram illustrating the hysteretic laminar-turbulent transition in experiments on counter-rotating
(Reo < 0 and Re; > 0) Taylor-Couette flow with I' = 5.26 and n = 0.905. The diagram indicates transitions observed
in experiments where Re; was increased or decreased quasi-statically while keeping Re, fixed. The black solid and
dashed lines, drawn to guide the eye, indicate the transition boundaries from laminar flow to turbulence and from
turbulence to laminar flow, respectively. The gray dash-dotted line represents the marginal stability curve for TCF
at n =0.9 for I' = co [47].

waited a time interval of 3.2 7 between steps to ensure that the flow had reached equilibrium. The turbulent-
laminar transition boundary at the same Re, was then determined by starting in the turbulent regime and
slowing the inner cylinder down by ARe; = 10 every 3.2 7 until the flow was observed to be in the laminar
state. The experiments were repeated for different fixed values of Re,.

The experimental studies revealed instability of the azimuthally symmetric smooth laminar flow always
leads to turbulence over a range of Re, from —3500 to —500 (Figure 6). The transition back to laminar
flow was always observed to be hysteretic; the range in Re; over which hysteresis occurs increases as the
magnitude of Re, increases. Our results indicate that transition from laminar flow is suppressed by the
moderate aspect ratio of our apparatus, i.e., for fixed Re,, the transition occurs at Re; larger than that
predicted by linear stability analysis with T' = co (gray line in Figure 6). This observation is consistent with
earlier experiments at larger values of I' (and somewhat smaller values of ) where, like our studies, the end
caps rotated with the outer cylinder [31]. In that work, the delay of laminar flow transition was found to
increase with decreasing I', most likely due to the end-wall effects (e.g. dissipation and Ekman pumping)
that become more pronounced as I' decreases.

2. Flow Transitions at Re, = —1000

A detailed experimental and numerical investigation at fixed Re, = —1000 led to the observation of an
intermediate state that plays an important role in the laminar-turbulent transition. The transition from
turbulence to laminar flow was found to involve an aperiodic stable intermediate state (interpenetrating
spirals) that persists over a range of Re;. Moreover, IPS were found to appear — albeit transiently — during
the transition from laminar flow to turbulence. Transitions between different flow states are described in
detail below.

a. Transitions in Laboratory Experiments
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Transition Experiment Noiseless DNS
Laminar — Turbulence 643 + 2 675 + 5
Turbulence — IPS 625 + 3.6 623.5 £ 0.5
IPS — Turbulence 631 + 3.7 630.5 + 0.5
IPS — Laminar 617 £ 1 617.5 £ 0.5

TABLE I. The inner cylinder Reynolds numbers for flow transitions are shown for both laboratory experiments and
numerical simulations at Re, = —1000. Uncertainty values from the experiment reflect the systematic uncertainties
associated with the measurement of Re as well as repeatability of the transition, while the uncertainty values from
the noiseless DNS reflect the resolution with which the dependence on Re; was investigated. The uncertainties in
experimental values were calculated using an uncorrelated linear propagation of uncertainties associated with all
measured quantities and measurement repeatability represented by the standard deviation.

(a) (b)

FIG. 7. Evolution of the flow during laminar to turbulent transition in experiments at Re, = —1000 and Re; = 643.
The sequence of snapshots shows (a) the initial laminar flow, (b) transient interpenetrating spirals, and (c) persistent
intermittent turbulence.

Transitions were determined in flow visualization studies by first spinning up the outer cylinder to Re, =
—1000 (with the inner cylinder at rest), and then increasing the inner cylinder’s counter-rotation in steps of
ARe; = 0.5 every 3.2 7, until the flow became turbulent. Subsequently, beginning from the turbulent state,
Re; was decreased at the same rate as before until the flow returned to the laminar state. No observable shifts
in the transition boundaries were found when incrementing or decrementing Re; in steps of ARe; = 0.25
separated in time by 10.77.

With the flow starting in a laminar state, laboratory experiments exhibit a laminar-turbulent transition at
Re; = 643 with a total uncertainty in Re; of £2. Repeated measurements demonstrate the transition can be
observed with a resolution of £0.13 (i.e. 0.02 %), as constrained by the mechanical limits of the motor and
transmission driving the inner cylinder; in other words, from laminar flow just below threshold (cf. Figure
7(a)), a single increment of ARe; = 0.13 results in turbulence. At onset (with Re; fixed), the structure of
the flow changes slowly at first; very weak interpenetrating spirals gradually become discernible and grow
slowly in amplitude with time (cf. Figure 7(b)). Then, abruptly, the spirals break up and spatiotemporally
intermittent turbulence develops on top of an IPS-like background flow and persists (cf. Figure 7(c)). The
interval of time over which the flow resembles IPS before transitioning to turbulence was different each
time the experiment was performed and this interval decreased with an increase in the increment size of
ARe;. If Re; is increased stepwise (with a fixed time interval of 3.2 7 between each step), the transition
Re; is unchanged for increments of ARe; < 1; the transition Re; is observed to decrease for increments of
ARe; > 1.

Starting from turbulent flow, decreasing Re; reveals a transition to stable IPS at Re; = 625 + 3.6. IPS
were observed to be weakly chaotic (i.e., having a broad-band temporal spectrum) over a range of Re; and
persist for as long as 3.8 x 103 7 (two and a half days, after which time the experiments were ended). From
stable IPS, increasing Re; leads to a transition back to intermittent turbulence at Re; = 631+3.7; decreasing
Re; leads instead to a transition to the axisymmetric laminar state at Re; = 617 £ 1. It should be noted
that the values of Re; at which various transitions are observed (see Table I) depend on disturbances of two
qualitatively different types: (a) disturbances associated with a discrete change of Re; and (b) other types of
disturbances (e.g., the cylinders not being perfectly round or coaxial, the deviation in their angular velocity
from a constant, etc.). All of these are disturbances of a finite, though likely small, amplitude.

b. Transitions in Numerical Simulations
Numerical simulations were used to determine linear stability of the steady axisymmetric laminar flow v&™.
This flow was generated at Re, = —1000 and different fixed Re; by keeping only the azimuthally symmetric
mode and evolving the state until it stopped changing. The azimuthal symmetry of this flow was then broken
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by perturbing the first Fourier mode (with the nonlinear term generating disturbances for all other modes).
Evolving the perturbed flow, we found that the perturbation decays (the laminar state is linearly stable) for
Re; < Re§ = 675 £ 5 and grows, resulting in a transition to turbulence, for Re; > Ref.

Since the laminar flow undergoes transition to turbulence in experiment at a notably lower Re; than
the linear stability threshold Re;c, an investigation of its stability to finite amplitude disturbances was
performed. Qualitatively, we find that, for Re; > 634, finite amplitude perturbations lead to destabilization
of the laminar state, giving rise to IPS with an amplitude that grows and saturates temporarily. Ultimately
the IPS gives way to spatiotemporally intermittent turbulence, just as in the experiment. Qualitatively the
same transition sequence was found to occur for initial disturbances with different magnitudes and spatial
profiles.

To quantify qualitatively how the critical disturbance amplitude depends on Re;, we fixed the spatial
profile of the disturbance by choosing the initial condition in the form of a homotopy

v=(1-a)v®™ 4 av5 (6)

where v!*™ is the laminar flow at the given Re; and vIF® is a snapshot of the (nonaxisymmetric) IPS at

Re; = 630. The structure of the IPS is fairly similar at different Re;; thus, for the purpose of determining
critical disturbance amplitudes, we considered it to be sufficient to compute v'S at a fixed Re;. The
homotopy parameter 0 < o < 1 characterizes the magnitude of the disturbance; increasing « increases the
disturbance amplitude. This particular choice of homotopy guarantees that initial conditions are divergence-
free for any value of «.

Numerical simulations find the same sequence of transitions as laboratory experiments when the flow is
initially turbulent. Decreasing Re; first leads to a transition to stable IPS at Re; = 623.5+0.5. From stable
IPS, increasing Re; leads to a transition back to turbulence at Re; = 630.5 £ 0.5, while decreasing Re; leads
to a transition to the time-independent laminar state at Re; = 617.5 & 0.5. These numerically determined
transition Reynolds numbers between IPS and turbulence and from IPS to laminar are quantitatively in
agreement with those found in laboratory experiments, as illustrated in Table I. Due to the subcritical nature
of the transition between laminar and turbulence, however, the appropriate choice of the finite amplitude
perturbation, «, is required.

The protocol for determining Re; for transition from turbulence to IPS is as follows: We started with
verifying that turbulence persists at Re; = 640 by evolving the flow for a time interval 5.2647. Then we
ramped down Re; in increments of ARe; = 5 and evolved the flow for the same interval to determine whether
a transition occurred. Once a transition was detected (at Re; = 620), we re-initialized the flow using the
final state of the simulation at Re; = 625, decreased the Reynolds number by ARe; = 1, and evolved the
flow for a further 5.264 7. The procedure was repeated with ARe; = 2,3, --- until a transition was found.

A similar protocol was used for the two transitions from stable IPS. In these cases, we verified that stable
IPS persists at Re; = 620 and 630. The final states of the simulation at Re; = 630 (or Re; = 620) were
evolved for 5.264 7 at a fixed Re; that was increased (or decreased) by ARe; = 1,2,3, -+ until transition to
turbulence (or laminar flow) was found. Note that, in all of these cases, only one simulation was performed
and the finest resolution was ARe; = 1, which determines the accuracy of the values reported in Table I.

Given ample experimental evidence that the transitions between turbulence and IPS are probabilistic
[17], we did not investigate these transitions numerically in more detail. For the transition from IPS to
laminar flow, however, experiments did not conclusively determine the nature of the transition. We therefore
performed an additional numerical investigation of this transition by evolving IPS at a number of fixed Re; in
the range (617,618). While most of the results were consistent with a transition threshold found previously,
there were a few outliers. In particular, we found that evolving IPS for 5.2647 at Re; = 617.8125 does
not result in a transition to a laminar flow, although eventually the flow does relaminarize. This result
shows that the transition from IPS to laminar flow also appears to have a probabilistic nature and does not
correspond to a bifurcation which would have resulted in a sharp transition boundary.

c. Flow Field Characterization
Flow fields computed numerically also compare well with measurements from laboratory experiments. The
stable IPS found in simulations and experiments exhibit a similar spatial structure (Figure 8). Moreover,
both experiments and simulations show that just above the onset of turbulence, the flow features localized
patches of turbulence that co-exist with disordered spiral structures [17] (see Figure 8 for an example of
the localized turbulent patch in both experiment and numerics). To quantitatively compare the flows in
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(a)

FIG. 8. A snapshot of interpenetrating spirals in (a) a tomo PIV experiment and (b) DNS. Each image shows a
single isosurface of the perturbation field, vy, for Re; = 625 and Re, = —1000 inside a cylindrical subvolume. The
color indicates the corresponding azimuthal velocity component. Red (blue) indicates flow in the same direction as
the inner (outer) cylinder rotation. The shaded orange rectangular box represents the region probed by tomo PIV,
which spans approximately 10 % of the flow domain volume.

FIG. 9. A snapshot of a turbulent flow in experiment (a) and DNS (b). Each image shows a single isosurface of
the perturbation field, vy, for Re; = 650 and Re, = —1000 inside a cylindrical subvolume. The color indicates the
corresponding azimuthal velocity component. Red (blue) indicates flow in the same direction as the inner (outer)
cylinder rotation. The shaded orange rectangular box represents the region probed by tomo PIV, which spans
approximately 10 % of the flow domain volume.

experiment and numerics, we computed the average energy E corresponding to the 6 component of the
velocity perturbation v = v — v#™ over a time interval T = O(7) and region €2 in the 7,z plane at a
fixed azimuthal location where experimental velocity measurements were available. Only the #-component
of velocity was analyzed because v, and v, had increased noise due to the frame rates used in the PIV.
The region © is bounded by the coordinates r € [n/(1 —n),1/(1 — n)] and z/T" € [0.254,0.973], where z
is measured from the bottom of the flow domain. For the stable states (IPS and turbulence), the average
energy was defined according to

1 7 —
E= /0 dt /Q R (L) drdz, 1)

where A is the area of the cross section of €.

The information presented above is summarized in Fig. 10 in the form of a bifurcation diagram. In
particular, we find that the energy F serves as a good order parameter that allows one to easily distinguish
the qualitatively different flows (laminar flow, IPS, and turbulence) and to determine where transitions
between different flows take place. In particular, we find that the average values of E in experiment and
numerics are in good quantitative agreement and that F changes smoothly with Re; for both IPS and
turbulent flow over the regions where these flows are stable (indicated by solid black lines). The dashed
lines indicate the trends when these flow states become unstable and are merely extrapolations of the solid
curves.

The figure also shows how the energy of the critical disturbance that lies on the boundary of the basin of
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FIG. 10. Transition map for the three flow states: laminar, IPS, and turbulence. Numerically computed values
of E for stable IPS and turbulence at various Re; are plotted as ¢ while the values calculated from experimental
measurements are plotted as ®. The gold and blue arrows indicate the values of Re; at which transitions occur
in simulation and experiment respectively. The shading around the arrows corresponds to the uncertainty in the
transitional Re; value. The D and @ represent the E value associated with the critical magnitude of the finite
amplitude perturbation considered here, which corresponds to a = a., necessary to initiate transition from laminar
flow to IPS and turbulence, respectively. All curves are to guide the eye only.

attraction of the stable laminar flow varies with Re;. The dotted (dashed) line denotes the transition to IPS
(turbulence). To compute this boundary, we performed an average over the azimuthal variable rather than
time in (7), where v = a(v'FS — v1am) according to (6) and o = ... Although the specific values of E which
define this boundary, just like a., depend on the spatial structure of the perturbation v, the shape of the
boundary suggests that it is related to an unstable edge state (or states) connecting the laminar state and
IPS, as discussed previously.

In the course of this work we learned that the transition to turbulence in a TCF with I = 5.26 is direct
from laminar to turbulent, unlike the transition observed in large aspect ratio systems. This transition is
mediated by an intermediate flow state that believed to live on the boundary between turbulence and laminar.
The direct nature of this transition resembles the transitions to turbulence observed in wall bounded, shear
flows which makes the small I' TCF an interesting system to study the dynamical systems description of
turbulence.

IV. PROPOSED WORK: EXPERIMENTAL SEARCH FOR ECS IN TURBULENT TCF

The aim of this research is to show that a real turbulent flow can be understood in the dynamical systems
framework that is discussed in section IT A. Other studies have investigated this dynamical systems frame-
work, however it has been done by and large in numerics [12-16]. Experimental observations of close passes
to ECS, on the other hand, have mostly been either in 2D flows [48, 49] or in 3D flows with ambiguous
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comparison techniques [50, 51]. The ambiguities present in previous studies can be removed by working
in TCF in a limit where the numerics are able to compute the entire flow field, incorporating the physical
boundary conditions and the experiment can make time-resolved measurements of the velocity field in a
sufficiently large region of the laboratory flow.

In order to test the dynamical systems description of turbulence experimentally, a process needs to be
specified for identifying the key solutions that influence the flow in state space, namely the ECSs. The
challenge with identifying the ECS is that they are not known a priori and need to be first discovered then
characterized. Once the ECSs are identified, a means of observing a turbulent trajectory making a close pass
to an ECS in state space is needed. This ability to identify when the turbulent flow is dynamically close to
an ECS could be an essential tool needed to further develop a dynamical systems approach to understanding
turbulence.

Candidate ECSs to be tested experimentally need to first be identified numerically. To do this, a long
turbulent time series computed in numerics can be generated and analyzed for key features of an ECS. The
snapshot in time where the numerical turbulent trajectory exhibits the key features of an ECS can then be
used as an initial condition in an optimization algorithm to converge onto the ECS that is nearby in state
space [52]. In general, there is no single identifying feature that could be easily looked for in a turbulent
record, thus each class of ECS needs to be searched for with different tools. For instance, if the ECS was a
fixed point (e.g. point C in figure 2), than a close pass in state space would mean that the time evolution
of a trajectory would become more and more time-independent as it got closer. This means that a graph
of the turbulent trajectories speed moving through state space can be searched for regions where the speed
drop close to zero. Preliminary evidence, however, suggests that fixed points do not play a key role in the
dynamics of state space for TCF, but instead, the dynamics are influenced by periodic orbits. Periodic orbits
are solutions in state space that form closed loops. This means that as time evolves, the flow will repeat
itself.

For periodic ECS, a tool called the self-recurrence can be used to find good initial conditions for a con-
vergence algorithm. An ECS that is periodic in time would exhibit self similarity at a time separated by
the period of the ECS. This key feature of a periodic orbit can be used as a signature to identify the prox-
imity of a turbulent trajectory to this class of ECS. To exploit this signature, a metric of self similarity, or
self-recurrence, can be defined as:

Rseif(t, t — ') = ming||Tourn (r, 0, 2, ) — Rplyurn(r, 0, 2, — t')]| (8)

where ¢’ is the time delay, Ry applies a shift by ¢ along the azimuthal direction to account for possible drifts
of the flow structure, and || - || is the norm of the vector. This self-recurrence is a function of both time along
the turbulent trajectory, t and an earlier time, ¢t — ¢'. Once Rga(t,t — t') is computed, a heat-map where
the intensity of each pixel corresponds to the value of Rger at that value of (¢,t —t') can be generated. An
example of a this self-recurrence plot can be seen in figure 11. In these plots, nearly periodic intervals of
the turbulent series show up as periodic structures in the horizontal and vertical direction. Regions of the
turbulent trajectory where the self-recurrence plot shows particularly strong periodic structure can be used
as an initial condition for an algorithm that searches in state space for time periodic flows. Some of the
initial conditions obtained this way converge to an ECS.

FIG. 11. Example self-recurrence plot of a simulated turbulent trajectory at Re, = —200 and Re; = in TCF with
I' =1 and n = 0.71. Figure adapted from Krygier [52]

A cross-recurrence shows whether or not the turbulent trajectory mimics the ECSs behavior. Once an
ECS has been obtained, the next step is to observe that not only does the turbulent flow come near the
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ECS in state space, but the turbulence also mimics its dynamics. This can be done by evaluating what is
called the cross-recurrence between the turbulence and the ECS. The cross-recurrence is very similar to the
self-recurrence, except that it is comparing the difference between the turbulence and a particular known
ECS. Thus, the cross-recurrence is given by

Rcross (ta T) = min¢| |7-_’:turb (T’, 03 2, t) - quﬁECS (7'7 0’ Z, T) || (9)

where 7 is the phase along the periodic orbit. From R ;css, similar plots to those made to initially identify
periodic ECS are generated. If the turbulent trajectory is close and also mimicking the behavior of the ECS,
than the flow and ECS will be evolving at the same rate. This means a close pass will have a minimum
that is elongated along the diagonal (i.e. t = 7). An example of a close pass seen in the cross-recurrence of
numerically computed turbulence and an ECS can be seen in figure 12.

RPOO01 solution, turbulent simulation
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FIG. 12. Example of a cross-correlation between numerical integrated turbulence and an ECS. Note the minimum
that occurs along a diagonal is characteristic of a close pass to a relative periodic orbit.

Currently, seven candidate ECSs to be compared with experimentally obtained turbulent flows have been
identified. The process for evaluating the dynamical relevance of an ECS in the experimental flow is, in
essence, the same as what was done in numerics. That is, a cross-recurence between the experimentally
measured turbulence and and ECS will be evaluated and searched for minima that fall along the diagonal.
There are, however, a few considerations that need to be discussed that are specific to how this will be done
in experiment.

The first consideration is what the system will allow for measurements of turbulent flow that can be
compared to the ECS. I propose designing and constructing a new, small aspect ratio TCF to perform this
search for ECS. This new TCF would be constructed completely out of transparent, index matched materials
allowing for optical access to 100 % of the flow domain. With optical access to the full flow domain, either full
volumetric velocity measurements or 2D-2C measurements in selected planes of the flow can be performed.
This system would allow for direct comparisons of the full numerically computed ECS with full flow field
measured in experiment. To obtain full volume velocity measurements, cameras can be aimed from beneath
the experiment and frame rates could be designed to be low enough to allow for the images to be streamed
directly to disk allowing for extended observation times. Similarly, to obtain 2D-2C velocity measurements,
a light sheet could shine through the side walls of the experiment and a camera placed directly bellow it
could record the motion of particles in the light sheet. An example of this proposed design can be seen in
Fig. 13.

Before making full domain measurements of turbulence, PIV obtained on a thin slice (2D-2C) at a constant
z height will be compared to the ECS. The simplified nature of the 2D-2C measurements is advantageous
for the development of the procedures as well as the computational machinery needed to make comparisons
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FIG. 13. Drawing of proposed new Taylor-Couette cell and mounding assembly. The cell at the bottom would be
constructed out of acrylic to be both transparent and index matched to working and cooling fluids. The assembly in
gray is the broken axle drive shafts.

to the numerics. By measuring the in-plane velocity of the r-0 plane, flow information along the entire
symmetry dimension will be obtained. This will reduce ambiguities along the streamwise direction, but
information along the z-axis will not be present. However, cross-recurrences with numerically integrated
turbulence against known ECS performed with only the in-plane components along the r-6 plane in the
center of the domain showed similar results to the full 3D cross-recurrence of the same data. Therefore, no
extrapolation or approximation technique will be implemented.

Although no extrapolation is needed, choosing the proper plane in numerics that corresponds to the
experiment is crucial. The PIV data will be obtained in a plane very near the center of the domain, but a
change in the location along z of only 1 mm results in discrepancies too large to properly perform recurrence
analysis. To overcome this, axisymmetric laminar flow in the experiment will be measured in conjunction
with each experimental turbulence experiment and compared with the numerically computed laminar flow
at the same Reynolds numbers. By minimizing the difference between the experimentally obtained velocity
profile and the numerically computed profile, the z height can be determined to high accuracy.
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